Influence of Ultrafine 2CaO·SiO2 Powder on Hydration Properties of Reactive Powder Concrete
نویسندگان
چکیده
In this research, we assessed the influence of an ultrafine 2CaO·SiO₂ powder on the hydration properties of a reactive powder concrete system. The ultrafine powder was manufactured through chemical combustion method. The morphology of ultrafine powder and the development of hydration products in the cement paste prepared with ultrafine powder were investigated by scanning electron microscopy (SEM), mineralogical composition were determined by X-ray diffraction, while the heat release characteristics up to the age of 3 days were investigated by calorimetry. Moreover, the properties of cementitious system in fresh and hardened state (setting time, drying shrinkage, and compressive strength) with 5% ordinary Portland cement replaced by ultrafine powder were evaluated. From SEM micrographs, the particle size of ultrafine powder was found to be up to several hundred nanometers. The hydration product started formulating at the age of 3 days due to slow reacting nature of belitic 2CaO·SiO₂. The initial and final setting times were prolonged and no significant difference in drying shrinkage was observed when 5% ordinary Portland cement was replaced by ultrafine powder. Moreover, in comparison to control reactive powder concrete, the reactive powder concrete containing ultrafine powder showed improvement in compressive strength at and above 7 days of testing. Based on above, it can be concluded that the manufactured ultrafine 2CaO·SiO₂ powder has the potential to improve the performance of a reactive powder cementitious system.
منابع مشابه
The Influence of Ultrafine Filler Materials on Mechanical and Durability Characteristics of Concrete
This paper aims at investigating the influence of partial replacement of Portland cement with ultrafine fillers compared to limestone powder on the durability and mechanical characteristics of concrete. For this purpose, ultrafine calcium carbonate materials with different specific surface areas of 9.7 and 15.1 m2/g and limestone powder (0.72 m2/g) were used. The results indicate that the ultra...
متن کاملBehavior of FRP-Confined Reactive Powder Concrete Columns under Eccentric Loading
Fiber reinforced Polymers (FRP) have widely used for the purposes of enhances strength and ductility of concrete columns. Proper design of such hybrid columns, however, requires a better recognition of the behavior of concrete columns confined with FRP. In this paper, the influence of FRP thickness, concrete compressive strength, and column size on the performance of eccentrically loaded reacti...
متن کاملEffects of Different Water and Super Plasticizer Amount, Pre-Setting and Curing Regimes on the Behavior of Reactive Powder Concrete
Reactive Powder Concrete (RPC) is an ultra high performance concrete which has superior mechanical and physical properties. The RPC is composed of cement and very fine powders such as crushed quartz (100–600 μm) and silica fume with very low water/binder ratio (W/B) (less than 0.20) and Super Plasticizer (SP). The RPC has a very high compressive and tensile strength with better durability prope...
متن کاملPrediction of Mechanical Properties of Reactive Powder Concrete by Using Artificial Neural Network and Regression Technique after the Exposure to Fire Flame
An experimental work was carried out to investigate some mechanical properties of Reactive Powder Concrete (RPC) which are particularly required as input data for structural design. These properties include compressive strength, flexural strength, tensile strength and static modulus of elasticity. A combined laboratory and modeling study was undertaken to develop a database of the estimation ab...
متن کاملSimulation of the Reactive Powder Concrete (RPC) Behavior Reinforcing with Resistant Fiber Subjected to Blast Load
In research or experimental works related to blast loads, the amount of explosion material and distance of explosion point are very important. So, in this paper has been attempted to present a parametric study of the reactive powder concrete subjected to blast load. The effect of the different amount of TNT adopted the literature, distance of explosion point from RPC slab and also the location ...
متن کامل